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ABSTRACT
Plant diseases pose a significant threat to global food security, resulting in substantial agricultural 
losses. Traditional methods of diagnosing plant diseases rely on manual observation, which is time-
consuming and prone to errors. Recent advancements in deep learning, particularly Convolutional 
Neural Networks (CNNs), offer a promising solution for automating and improving the accuracy of 
plant disease classification through image analysis. This study evaluates the performance of five state-
of-the-art CNN architectures: VGG16, GoogleNet, EfficientNet B0, ResNet50, and DenseNet201 
for plant leaf classification using the PlantVillage dataset, which comprises 54,305 images across 38 
classes.  Among the models, VGG16 achieved the highest accuracy of 93.75% and recall of 93.75%, 
with a low loss of 0.48, though it has a larger parameter size of 56.79 MB. GoogleNet followed 
closely with 88% accuracy, a high F1 score of 0.93, and a balanced size of 85.51 MB, despite a higher 
loss of 0.96. ResNet50 demonstrated strong performance with 84.36% accuracy and 0.35 loss, but 
was the most resource-intensive at 100.17 MB. EfficientNet B0, the smallest model at 18.62 MB, 
achieved 84.37% accuracy, whereas DenseNet201 underperformed, attaining only 69.32% accuracy 
and 1.06 loss, despite its moderate size of 28.01 MB. These findings highlight trade-offs between 
accuracy and computational efficiency, with VGG16 and GoogleNet excelling in precision, while 

EfficientNet B0 presents a compact alternative 
for resource-limited settings. This study provides 
valuable insights for selecting optimal CNN 
models for plant disease detection based on 
specific agricultural needs.
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INTRODUCTION

The Food and Agriculture Organization (FAO) (2021) estimates that plant diseases 
contribute to approximately 1.3 billion tons of food waste annually, accounting for one-
third of all food produced (Junaid & Gokce, 2024). The timely and accurate identification 
of these diseases is crucial for implementing effective control strategies, minimizing 
agricultural yield losses, and promoting sustainable farming methods. Traditionally, plant 
disease diagnosis has relied on manual inspections by skilled agronomists, a procedure 
that is both labor-intensive and prone to human error. The accuracy of these inspections is 
often compromised  by factors such as inspector fatigue, limited expertise, and the subtlety 
of disease symptoms at early stages (Demilie, 2024). Moreover, monitoring large-scale 
agricultural fields poses significant challenges. Environmental factors, including variable 
lighting conditions, image quality, and resolution, further complicate disease detection 
(Gomez et al., 2024). Poor lighting or occlusions can distort disease symptoms, making 
accurate diagnosis difficult  (Javidan et al., 2024). Consequently, traditional methods often 
fail to facilitate timely interventions, which are essential for mitigating crop losses.

Real-time disease detection in the field presents a significant challenge. In addition 
to effectively processing vast amounts of image data, a robust system must operate 
effectively under diverse field conditions, such as uneven lighting, varying weather patterns, 
and different crop growth stages. Addressing these complexities requires sophisticated 
algorithms that can distinguish between healthy and unhealthy crops in dynamic settings, 
ensuring timely and accurate diagnosis. Recent advancements in deep learning (DL), 
particularly CNNs, have revolutionized plant disease classification (L. C. Ngugi et al., 
2021). These methods automate disease identification, offering a more accurate and efficient 
approach to diagnosing plant diseases through image analysis. DL is an advanced subset of 
machine learning (ML) that excels at handling complex problems involving diverse data 
types, such as videos and images. 

ML, a subset of artificial intelligence (AI), enables systems to learn from data and 
improve performance without explicit programming. Its more advanced form, DL, employs 
multi-layered neural networks to process complex datasets, such as images and time-series 
data. DL has transformed various fields, including agriculture and healthcare. In agriculture, 
DL facilitates the automated detection of plant diseases, thereby enhancing crop yield 
and sustainability (L. C. Ngugi et al., 2021). Similarly, in healthcare, DL models have 
revolutionized disease diagnosis, drug discovery, and antimicrobial resistance management. 
For instance, Khan et al. (2023) reviewed AI’s role in drug discovery, highlighting its 
ability to predict molecular interactions and combat resistant pathogens, while Alzubaidi 
et al. (2021) surveyed DL architectures, demonstrating their versatility in medical imaging 
and genomics. These cross-disciplinary successes underscore DL’s potential to address 
complex classification tasks, including plant disease identification. By adapting pre-trained 
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CNN architectures, this research integrates cutting-edge DL techniques into agricultural 
applications, mirroring the progress seen in healthcare. DL techniques have gained 
significant attention due to their ability to deliver more accurate predictions than traditional 
ML algorithms. Recent efforts have aimed to enhance plant disease detection by refining 
deep-learning algorithms (Abouelmagd et al., 2024; Chowdhury et al., 2024; Perumal et 
al., 2024; Sofuoğlu & Birant, 2024). The increasing adoption of DL architectures for plant 
disease identification highlights the need for further research into novel deep-learning 
architectures. There is a growing demand for optimized models with fewer parameters, 
faster training times, and uncompromised performance. Many studies focus on evaluating 
individual models or using datasets with restricted variability, resulting in a lack of 
comprehensive comparative analyses of advanced CNN architectures under standardized 
conditions. In summary, the research problems that have inspired this study are:

	• Limitations of traditional plant disease diagnosis, in which manual methods are labor-
intensive, subjective, and prone to errors.

	• Effective detection requires efficient data processing, adaptability to diverse field 
conditions, and robust algorithms for accurate classification in dynamic environments.

This research aims to bridge this gap by systematically assessing five prominent 
CNN models: VGG16, GoogleNet, EfficientNet B0, ResNet50, and DenseNet201, under 
various imaging conditions using the widely recognized PlantVillage dataset. The study 
evaluates model performance across multiple metrics, including accuracy, loss, recall, F1 
score, precision, and parameter size, to determine DL architectures with fewer parameters 
and faster training times while maintaining high classification performance for plant leaf 
disease detection.  Rather than proposing a new model, this study employs transfer learning 
with pre-trained CNN architectures to benchmark their effectiveness in plant leaf disease 
classification. 

RELATED WORK

CNNs have significantly advanced plant disease detection; however, prior studies vary 
widely in scope, methodology, and practical applicability. This section synthesizes key 
works, critically evaluating their strengths and limitations to contextualize this study. 
While early efforts focused on accuracy (e.g., Le et al., 2020), recent research emphasizes 
efficiency and real-world deployment (Parez et al., 2025), revealing gaps in comprehensive 
multi-metric comparisons and architectural diversity. For example, Le et al. (2020) achieved 
98.63% accuracy using a support vector machine (SVM) with a filtered local binary patterns 
(LBP) method with contour mask and coefficient k (k-FLBPCM) features, but its reliance on 
undistorted images limits robustness, making it less relevant to field conditions compared to 
CNN−based approaches. Bhagat et al. (2020) developed an optimized SVM-based method 
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for classifying plant leaves as healthy or unhealthy using Grid Search, improving accuracy 
from 80 to 84% while reducing computational costs. CNN-based models have shown 
superior performance. Ahmed et al. (2023) proposed a modified DenseNet201 architecture 
for grape leaf classification, evaluating the impact of layer freezing on fine-tuning. Using 
a dataset comprising 500 images across five categories, each containing 100 images, their 
DenseNet-30 model outperformed previous approaches with 98% accuracy. Similarly, 
Maeda-Gutiérrez et al. (2020) evaluated state-of-the-art architectures, including GoogleNet, 
AlexNet, ResNet18, ResNet50, and Inception V3, on the PlantVillage dataset featuring 
nine tomato diseases and a healthy class. GoogleNet excelled with an AUC of 99.72% 
and a sensitivity of 99.12%, demonstrating its effectiveness in detecting tomato diseases.

Other studies introduced novel modifications to existing architectures. Chen et al. 
(2020)  developed MobileNet-Beta, an enhanced version of MobileNetV2 incorporating 
Classification Activation Map, achieving 99.85% accuracy on the PlantVillage dataset 
and 99.11% on an external dataset. Rinu and Manjula (2021) introduced a VGG16-based 
model for identifying 38 plant diseases, attaining a mean accuracy of 94.80% using images 
from the PlantVillage dataset and highlighting CNNs' efficiency in resource-limited 
environments. Meanwhile, Albattah et al. (2022) designed a plant disease classification 
system using a custom CenterNet framework with DenseNet-77 as the backbone, 
achieving 99.98% accuracy on 54,306 plant leaf images from 14 species. However, mobile 
deployment remains a challenge.

Enhancing CNN architectures has been a focus in recent studies. Alirezazadeh et 
al. (2023) suggest integrating a Convolutional Block Attention Module (CBAM) with 
EfficientNetB0 for foliar disease classification in pear trees using the DiaMOS Plant dataset.  
EfficientNetB0 outperformed other models: InceptionV3, MobileNetV2, ResNet50,  and 
VGG19, achieving 86.89% accuracy. Chen et al. (2020) explored the Group Method of Data 
Handling (GMDH)-Logistic model that uses a multilayer perceptron to detect cucumber 
leaf diseases from a small-sized dataset. The proposed model achieved an average recall 
of 86.67%, but its applicability is limited to complex diseases and large datasets. Kulkarni 
and Ashwin (2021) demonstrated that an Artificial Neural Network (ANN) classifier using 
Gabor-filtered image features achieved up to 91% recognition accuracy. Nevertheless, the 
classification was performed on the features extracted by a Gabor filter, highlighting the 
textural, chromatic, and other distinctive attributes. Recent advancements in DL have further 
refined the classification of plant diseases. Padshetty and Ambika (2023) introduced the 
Leaky Rectilinear Residual Network (LRRN), combining ResNet with the Leaky Rectified 
Linear Unit (ReLU) activation function. Their approach, tested on PlantVillage images, 
showed improved accuracy of 94.56%, F1 scores (92.83%), specificity (92.58%), recall 
(93.12%), and precision (93.48%). The results highlight the validity of the suggested LRRN 
approach for detecting plant leaf diseases. Kaya and Gürsoy (2023) proposed a multi-head 
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CNN integrating red, green, and blue (RGB) and segmented images, achieving 98.17% 
accuracy on PlantVillage using a DenseNet-based architecture. Their fusion approach excels 
for diverse disease symptoms but requires significant preprocessing, limiting real-time 
use. Savaş (2024) employed a two-stage deep ensemble learning method for palm disease 
detection with MobileNetV2 and ResNet, achieving over 92% accuracy and a 99% area 
under the receiver operating characteristic (ROC) curve (AUC), demonstrating ensemble 
benefits but increasing computational complexity. 

Other research highlights trade-offs between accuracy and real-world feasibility. 
Sofuoğlu and Birant (2024) developed a lightweight CNN with attention mechanisms 
for potato disease detection. The experimental results conducted on a real-world dataset 
showed that a significant improvement (8.6%) in accuracy was achieved on average by 
the proposed model (98.28%) compared to the state-of-the-art models (89.67%) in the 
literature. The weighted recall, precision, and f-score all averaged 0.978, showcasing 
high diagnostic reliability. Jain and Ramesh (2021) developed a hybrid Convolutional 
Neural Network-Long Short-Term Memory network (CNN-LSTM) model for rice pest 
prediction, leveraging temporal weather and pest data. Their approach achieved a low root 
mean squared error (RMSE = 0.02–0.05), demonstrating robustness in disease forecasting. 
Recent advances in CNN-based plant disease detection include hybrid models that integrate 
CNNs with LSTMs for analyzing temporal progression, meta-learning for adaptive feature 
extraction, and attention mechanisms for improved symptom focus (Rodríguez-Lira et 
al., 2024). For instance, hybrid approaches that combine spatial and temporal data show 
promise in tracking severity (Leite et al., 2024), while attention-based models enhance 
feature extraction efficiency (Abebe et al., 2025). However, these innovations lack 
systematic comparison with traditional CNNs, creating a gap that this study begins to fill 
by establishing a baseline for future hybrid evaluations.

Despite the growing adoption of DL for plant disease classification, challenges remain, 
including high computational costs, limited generalization across diverse environmental 
conditions, and trade-offs between model accuracy and efficiency (Demilie, 2024; L. C. 
Ngugi et al., 2021). Many studies focus on evaluating single models or using datasets with 
limited variability, leaving a gap in comprehensive comparisons of state-of-the-art CNN 
architectures under standardized conditions. This study addresses that gap by systematically 
comparing five prominent CNN models: VGG16, GoogleNet, EfficientNet B0, ResNet50, 
and DenseNet201, using the widely adopted PlantVillage dataset. Performance is evaluated 
across multiple metrics (accuracy, loss, recall, F1 score, precision, and parameter size) 
to identify the most suitable models for plant leaf disease detection. The novelty lies 
in providing a holistic benchmark that quantifies trade-offs between accuracy and 
computational efficiency, offering actionable insights for real-world deployment in resource-
constrained settings, an area underexplored in existing literature. 
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Comparative Summary of Prior Studies  

Table 1 summarizes key prior studies, detailing their methodologies, datasets, and 
performance to highlight their contributions and limitations relative to this study.

Table 1  
Comparison of previous plant disease detection studies

Study Methodology Dataset Accuracy
(%)

Strengths Weaknesses

Le et al. 
(2020)

SVM + k-FLBPCM Custom 98.63 High accuracy Poor robustness 
to distortion

Bhagat et al. 
(2020)

SVM + Grid Search Custom 84 Computational 
efficiency

Moderate 
accuracy

Maeda-
Gutiérrez et al. 
(2020)

GoogleNet, 
AlexNet, ResNet18, 
ResNet50, and 
Inception V3

PlantVillage 99.39
98.93
99.06
99.15
98.65

High accuracy Only one plant 
is considered

Rinu and 
Manjula 
(2021)

VGG16-based PlantVillage 94.80 Efficiency in 
resource-limited

Dataset specifics 
are not detailed

Albattah et al. 
(2022)

Custom CenterNet 
+ DenseNet

PlantVillage 99.98 Exceptional 
accuracy 

Limited to 
one model and 
dataset; may not 
generalize to 
other plants or 
conditions

Ahmed et al. 
(2023)

Modified 
DenseNet201

500 grape 
images

98 Strong small-
dataset 
performance

Limited 
scalability

Parez et al. 
(2025)

LeafNet (Optimized 
CNN)

Custom 85 Lightweight, 
edge-ready

Lower accuracy, 
custom 
hardware

Note. SVM = Support vector machine; k-FLBPCM = Filtered local binary patterns (LBP) method with contour 
mask and coefficient k; CNN = Convolutional Neural Network 

Analysis of CNN Architectures  

Prior studies illustrate diverse CNN architectures with distinct trade-offs. Maeda-Gutiérrez 
et al. (2020) evaluated ResNet50 (50 layers, skip connections) on PlantVillage’s tomato 
subset, achieving 99.12% sensitivity due to its residual learning, which mitigates vanishing 
gradients, though its 100 MB size limits edge use. In contrast, Ahmed et al. (2023) 
modified DenseNet201 (201 layers, dense connectivity) for grape leaf classification, 
leveraging its feature reuse for 98% accuracy on a small dataset, but its complexity (28 
MB) sacrifices efficiency compared to ResNet. Alirezazadeh et al. (2023) enhanced 
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EfficientNet B0 (scalable depth/width) with CBAM, reaching 86.89% accuracy on pear 
diseases, highlighting its compactness (18.62 MB) but lower precision versus deeper 
models. These differences in ResNet’s depth, DenseNet’s connectivity, and EfficientNet’s 
efficiency underscore the need for a systematic comparison, as conducted here.  

Lightweight and Hybrid CNNs for Practical Applications  

Recent trends emphasize lightweight and hybrid CNNs for real-world deployment. Parez 
et al. (2025) introduced LeafNet, an optimized CNN with a 10 MB footprint, achieving 
85% accuracy in resource-constrained environments, outperforming traditional CNNs 
like VGG16 (56.79 MB) for mobile/edge use. Similarly, Komlavi et al. (2025) proposed 
AlexNetDense, a hybrid of DenseNet and AlexNet, reaching 92% accuracy on PlantVillage 
with a 30 MB size, balancing efficiency and performance. These advances contrast with 
our study’s focus on standard CNNs, highlighting a gap in lightweight model evaluation 
that future work should address.

MATERIALS AND METHODS

This section provides a comprehensive overview of the dataset used for implementing the 
CNN model in the classification of plant leaf diseases. The primary focus of this study 
is to identify the most suitable pre-trained CNN model for this task. The methodology is 
systematically divided into four key stages: data acquisition, data pre-processing, model 
training, classification, and performance evaluation. Each of these stages is elaborated upon 
in the following sections. Figure 1 graphically presents the Steps involved in classifying 
plant leaf disease.

Figure 1. Steps involved in plant leaf disease classification 
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Dataset Description

This study utilizes  the PlantVillage dataset (Hughes & Salathe, 2015) which consists of 
54,305 images across 38 classes. The dataset includes 14 plant species, with 12 classes 
representing healthy plants and 26 classes corresponding to various plant diseases. 
Additionally, it contains 1,143 background images, bringing the total to 55,448 images. 
The images vary in size and color. The PlantVillage dataset serves as a standardized 
benchmark for evaluating CNNs. However, its controlled laboratory conditions limit 
diversity compared to real-world scenarios, a concern highlighted in recent studies 
advocating for the use of combined public and local datasets (Abebe et al., 2025). This 
study acknowledges this limitation and utilizes the PlantVillage dataset for consistency 
while suggesting the incorporation of multi-source datasets as a future direction to improve 
robustness and generalizability. Figure 2 presents a selection of sample plant leaf images 
from the dataset. To minimize overfitting during model training, the dataset was divided 
into training (70%), validation (20%), and testing (10%) subsets.

Figure 2. Sample plant leaf images from the PlantVillage dataset (Hughes & Salathe, 2015)
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Pre-Processing and Data Augmentation

Before training the CNN models, several data pre-processing techniques were implemented 
to enhance the quality of the input images. Input images were pre-processed by resizing 
to 224 × 224 pixels, normalizing pixel values to [0, 1], and removing background noise 
via OpenCV segmentation. To prevent overfitting on PlantVillage’s 54,305 images, data 
augmentation was applied using Keras’ ImageDataGenerator: random rotations (0–20°), 
horizontal/vertical flips (50% probability), zooms (0.8–1.2x), and brightness shifts (±20%). 
These techniques increased effective training data by 30%, enhancing model robustness 
to orientation and lighting variations, a critical step absent in simpler studies but vital for 
generalization (Thalor et al., 2025).

CNN-Based Models

This study evaluates five CNN architectures: VGG16, GoogleNet, EfficientNet B0, 
ResNet50, and DenseNet201, selected for their established performance in image 
classification and diverse design principles. VGG16 represents deep, uniform architectures; 
GoogleNet introduces inception modules for efficiency; ResNet50 leverages residual 
learning for depth; DenseNet201 uses dense connectivity for feature reuse; and EfficientNet 
B0 balances scalability and compactness. These models were preferred over newer 
architectures, such as Vision Transformers (ViTs) or MobileNetV3, due to their widespread 
adoption, availability of pre-trained weights compatible with PlantVillage, and manageable 
computational demands on our hardware (e.g., Google Colab Pro). In contrast, ViTs require 
extensive retraining and higher resources, while MobileNetV3, though lightweight, lacks 
the multi-metric evaluation depth needed for this study (Verma et al., 2025). Unlike 
ensemble approaches (Thalor et al., 2025) or Neural Architecture Search (NAS), which 
prioritize optimization over generalizability, our focus on standard CNNs provides a robust 
and interpretable baseline.

VGG16 Network

VGG16, developed by Simonyan and Zisserman (2015), comprises 13 convolutional layers 
with 3 × 3 filters (stride 1) and five max-pooling layers (2 × 2, stride 2), followed by three 
fully connected layers, totaling 138 million parameters. In this study, a pre-trained VGG16 
(ImageNet weights) was fine-tuned by freezing the first 10 convolutional layers to retain 
low-level feature extraction while retraining the top layers. A custom classification head was 
added, consisting of dense layers (126, 256, 512, and 1,000 neurons) with ReLU activation, 
along with a 0.2 dropout rate and a Softmax output layer for 38-class classification. The 
model was optimized using Adam (learning rate 0.001).
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GoogleNet

GoogleNet, introduced by Szegedy et al. (2015), features 22 layers, including nine inception 
modules with parallel 1 × 1, 3 × 3, and 5 × 5 convolutions, reducing parameters to 6.8 
million. In this study, ImageNet-pretrained weights were used, with auxiliary classifiers 
disabled to simplify training. The final fully connected layer was replaced with a custom 
head (512 neurons, ReLU, 0.2 dropout, 38-class Softmax) and trained in PyTorch using 
categorical cross-entropy loss.

EfficientNet B0

EfficientNet B0, introduced by Tan and Le (2019), is the baseline model of the EfficientNet 
family, designed for high performance with minimal computational cost. It consists of 
237 layers, including 16 mobile inverted bottleneck (MBConv) blocks with squeeze-and-
excitation (SE) modules, five standard convolutional layers, and a fully connected layer, 
totaling approximately 5.3 million parameters. Its compound scaling approach balances 
network depth, width, and resolution, making it well-suited for resource-constrained 
environments. In this study, EfficientNet B0 was initialized with ImageNet pre-trained 
weights via TensorFlow’s Keras Applications module. To adapt it to the PlantVillage 
dataset, the first 200 layers (roughly 84% of the network) were frozen to preserve low- and 
mid-level feature extraction, such as edge and texture patterns relevant to leaf disease. The 
top layers were replaced with a custom head comprising dense layers of 126, 256, 512, 
and 1,000 neurons, each followed by ReLU activation and a 0.2 dropout layer to mitigate 
overfitting. The output layer used Softmax activation for 38-class classification. Training 
was conducted using the Adam optimizer (learning rate 0.001) with categorical cross-
entropy loss over 10 epochs and a batch size of 50. A learning rate scheduler was reduced 
by 10% every three epochs to improve convergence on the validation set.

ResNet50

ResNet50, developed by He et al. (2016), is a 50-layer deep residual network designed to 
mitigate vanishing gradient issues through skip connections. It includes 49 convolutional 
layers organized into 16 residual blocks (each with three layers: 1 × 1, 3 × 3, 1 × 1 
convolutions) and one fully connected layer, totaling approximately 25.6 million 
parameters. The residual blocks facilitate identity learning and improve training stability 
for deep architectures. In this study, ResNet50 was initialized with ImageNet pre-trained 
weights using TensorFlow’s Keras Applications module. The first 35 layers (approximately 
70% of the convolutional base) were frozen to retain generic feature extraction (e.g., 
leaf contours and color gradients), while the remaining layers were fine-tuned to capture 
disease-specific patterns. The original fully connected layer was replaced with a custom 
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classification head comprising dense layers with 126, 256, 512, and 1,000 neurons, each 
followed by ReLU activation and a 0.2 dropout rate, culminating in a Softmax output layer 
for 38-class classification. Training was conducted using the Adam optimizer with an initial 
learning rate of 0.001, categorical cross-entropy loss over 10 epochs, and a batch size of 50. 
A learning rate reduction (10% every three epochs) was applied to enhance convergence, 
leveraging ResNet50’s depth for robust generalization on the PlantVillage dataset.

DenseNet201

DenseNet201, proposed by Huang et al. (2017), is a 201-layer densely connected 
convolutional network. It comprises four dense blocks (each containing multiple 1 × 1 
and 3 × 3 convolutional layers), separated by transition layers (convolution and pooling), 
followed by a final fully connected layer, totaling approximately 20 million parameters. Its 
dense connectivity pattern links each layer to all subsequent layers within a block, reducing 
feature redundancy and mitigating vanishing gradients. In this study, DenseNet201 was 
initialized with ImageNet pre-trained weights via PyTorch, chosen for its flexibility in 
handling dense connections. The first 150 layers (about 75% of the network) were frozen 
to preserve low-level features (e.g., leaf vein patterns), while the remaining layers were 
retrained. The original classification layer was replaced with a custom head comprising 
dense layers of 126, 256, 512, and 1,000 neurons, each followed by ReLU activation, and 
a 0.2 dropout rate, with a final Softmax output layer for 38-class prediction. Training was 
performed using the Adam optimizer (learning rate 0.001) with categorical cross-entropy 
loss, 10 epochs, and a batch size of 50. A learning rate scheduler (10% reduction every 
three epochs) was employed to fine-tune the model, balancing its moderate size with 
performance on the PlantVillage dataset.

Model Fine-Tuning

Model performance hinges on hyperparameter tuning, optimized here to balance 
convergence and overfitting. Base layers (e.g., 70% of ResNet50, 80% of VGG16) were 
frozen to retain ImageNet-learned features, while a custom classification head was added, 
consisting of dense layers with 126, 256, 512, and 1,000 neurons, each using ReLU 
activation, a 0.2 dropout rate, and a Softmax output for 38-class classification. Dropout 
(0.2) was set based on validation loss reduction (10% improvement over 0.5), effectively 
preventing overfitting on PlantVillage’s controlled images. A batch size of 50 and 10 
training epochs were selected to optimize graphics processing unit (GPU) memory (16 
GB) and training time (4–6 hours/model), validated via early stopping on a 20% validation 
split. The Adam optimizer (learning rate 0.001, reduced 10% every three epochs) was 
selected for its adaptive convergence, outperforming SGD by 5% in preliminary tests. 
More advanced optimization methods, like genetic algorithms or reinforcement learning 
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(Verma et al., 2025), were excluded due to computational constraints and the sufficiency 
of manual tuning for this baseline study.  

Hardware and Software Tools

Experiments were conducted on Google Colab Pro, utilizing an 11th Gen Intel(R) Core 
(TM) i5-1135G7 @ 2.40 GHz, 16 GB random access memory (RAM), and an NVIDIA 
Tesla P100-Peripheral Component Interconnect Express (PCIe) GPU with 16 GB video 
random access memory (VRAM). The environment ran Python 3.8 via Jupyter Notebooks, 
with TensorFlow 2.8 and Keras as the primary frameworks for implementing VGG16, 
ResNet50, and EfficientNet B0. PyTorch 1.10 was used for GoogleNet and DenseNet201 
training, leveraging its dynamic computation graph for flexibility. Models were trained 
with a batch size of 50 over 10 epochs, using the Adam optimizer (learning rate 0.001) and 
categorical cross-entropy loss, as detailed in Table 2. Data preprocessing and augmentation 
were performed using OpenCV and Keras’s ImageDataGenerator, ensuring compatibility 
across frameworks.

Table 2  
Model’s parameters

Parameters Values
Optimizer Adam
Loss function Categorical cross-entropy
Epoch 10
Activation function ReLU/ Softmax
Batch size 50
dropout 0.25

Note. ReLU = Rectified linear unit

The study enhanced the performance and accuracy of plant leaf disease classification 
by optimizing the classification layers. A key component used in the experiment was the 
use of the ReLU and Softmax activation functions. The ReLU activation function played a 
significant role in the success of these models. ReLU operates by thresholding input values 
at 0, returning 0 for negative inputs (x < 0) and retaining the input value for non-negative 
inputs (x ≥ 0). This makes ReLU computationally efficient and effective in facilitating 
backpropagation during training, allowing models to learn important features and perform 
well across various tasks. The ReLU function is calculated as shown in Equation 1.

𝑓𝑓(𝑥𝑥) = max(0, 𝑥𝑥)                                                                                        	 [1]
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The Softmax function, commonly applied in the final layer of neural network models 
for multi-class classification tasks, transforms raw output scores (logits) into probabilities. 
It achieves this by calculating the exponential of each output and normalizing the values 
by dividing them by the total sum of all exponentials. This ensures that the output values 
remain between 0 and 1, summing to 1, and can be interpreted as probabilities. The Softmax 
function is computed as shown in Equation 2.

𝜎𝜎(𝑧𝑧𝑖𝑖) =  
𝑒𝑒𝑧𝑧𝑖𝑖

∑ 𝑒𝑒𝑧𝑧𝑗𝑗𝑗𝑗
      	 [2]

where 𝑧𝑧𝑖𝑖   represents the input vector (logits) for the 𝑖𝑖𝑡𝑡ℎ   class, the denominator is the sum 
of the exponentials of all inputs. The ReLU activation function is used in the convolutional 
layers, while Softmax is used in the dense layer. 

Performance Metrics

Evaluating DL models is essential for developing effective systems, particularly in the 
classification of plant diseases. Several metrics are commonly used to assess model 
performance in this context. One of the primary metrics is accuracy, which measures the 
ratio of correct predictions to the total number of instances evaluated (Shoaib et al., 2023). 
It is calculated using Equation 3 as follows:

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹
 	 [3]

where TP, TN, FP, and FN represent true positives, true negatives, false positives, and 
false negatives, respectively.

Another important metric is the loss function, which quantifies the difference 
between expected and actual values. During training, the objective is to minimize this 
error, improving model accuracy over time. Precision is also crucial, as it focuses on the 
proportion of correctly identified positive predictions (Shoaib et al., 2023). It is calculated 
using Equation 4 as follows:

Precision =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
   	 [4]

where TP and FP represent true positives and false positives, and false negatives, 
respectively.
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Higher precision indicates that the model effectively identifies true positives while 
minimizing false positives.

Additionally, recall (or sensitivity) measures the proportion of actual positives correctly 
classified by the model. It is crucial for evaluating how well the model detects positive 
cases (H. N. Ngugi et al., 2024). Recall is represented in Equation 5:

Sensitivity =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
      	 [5]

where TP and FN represent true positives and false negatives, respectively.

Finally, the F1-score provides a balanced measure of precision and recall. Calculating 
the harmonic mean of these two metrics is particularly useful when both false positives and 
false negatives must be minimized (H. N. Ngugi et al., 2024). The F1-score is determined 
by using Equation 6:

F1 − Score =   
2 ×  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ×  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 +  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

 	 [6]

Together, these metrics provide a comprehensive evaluation of model performance, 
ensuring it is both accurate and effective in distinguishing between positive and negative 
cases.

RESULTS 

Classification Performance

This section provides an in-depth analysis of the effectiveness of transfer learning models 
in classifying plant diseases using the PlantVillage dataset. The analysis compares models 
trained with identical hyperparameters but exhibiting varying performance outcomes. The 
main objective is to evaluate models based on accuracy, loss, recall, precision, F1 score, 
and parameter size. Table 3 summarizes the experimental results.

Table 3  
Classification evaluation results

Model Accuracy
(%)

Loss Recall
(%)

F1 score
(%)

Precision
(%)

Parameter
size (MB)

Execution
time (s)

VGG16 93.75 0.48 93.75 91.67 90.63 56.79 37,733
EfficientNet B0 84.37 0.56 84.38 80.46 80.10 18.62 2,718
DenseNet 69.32 1.06 68.75 67.81 71.87 28.01 7,315
ResNet50 84.36 0.35 84.37 80.90 80.83 100.17 19,279
GoogleNet 88.00 0.96 88.00 93.00 87.46 85.51 2,625
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Visual Analysis

Figures 3 and 4 depict accuracy and loss curves over 10 epochs. VGG16 (Figure 3a) 
shows rapid accuracy gains (plateauing at 93%) and stable loss (0.48), indicating effective 
convergence without overfitting. GoogleNet (Figures 3e and 4e) reaches 88% accuracy 

(a) (b)

(c) (d)

(e)

Figure 3. The accuracy plot: (a) VGG16, (b) EfficientNet, (c) DenseNet201, (d) ResNet50, and (e) GoogleNet 
model
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(a) (b)

(c) (d)

(e)

Figure 4. The loss function plot: (a) VGG16, (b) EfficientNet, (c) DenseNet201, (d) ResNet50, and (e) 
GoogleNet model

but exhibits higher loss (0.96), suggesting underfitting due to inception complexity not 
fully adapting to PlantVillage. DenseNet201 (Figures 3c and 4c) plateaus early (69%) 
with rising loss (1.06), reflecting underfitting from excessive connectivity overfitting static 
features. EfficientNet B0 (Figures 3b and 4b) stabilizes at 84% with moderate loss (0.56), 
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balancing efficiency but lacking depth for nuanced classes. ResNet50 (3d, 4d) shows steady 
improvement (84%) and low loss (0.35), avoiding overfitting via residuals.

DISCUSSION

The classification evaluation results in Table 3 highlight the trade-offs between model 
depth, architectural design, parameter efficiency, and performance metrics, including 
accuracy, loss, recall, precision, and F1 score. Each model demonstrates unique strengths 
and weaknesses based on its architecture, which in turn influences feature extraction, 
gradient flow, and optimization stability. VGG16 achieved the highest accuracy at 93.75%, 
demonstrating strong hierarchical feature extraction due to its deep sequential convolutional 
layers. Its high recall (93.75%) and F1 score (91.67%) indicate strong generalization 
and balanced classification performance. However, a relatively high loss value of 0.48 
suggests some degree of misclassification, potentially due to overfitting caused by its 
large number of parameters (56.79 MB). Despite this, the pre-trained convolutional filters 
in VGG16 effectively capture relevant spatial patterns in the data.  EfficientNet B0, 
optimized with compound scaling, achieved an accuracy of 84.37% while maintaining 
the smallest parameter size of 18.62 MB, making it the most parameter-efficient model 
in this comparison. Despite its compact design, this model achieved an 80.46% F1 score 
and 84.38% recall, indicating solid classification performance. However, its loss of 0.56 is 
slightly higher than that of ResNet50, suggesting optimization challenges due to its lower 
representational capacity compared to deeper networks. This trade-off highlights how 
EfficientNet B0 sacrifices some accuracy for significantly reduced computational cost. 

DenseNet, with an accuracy of 69.32%, was the weakest performer, likely due to 
gradient propagation inefficiencies or overfitting. DenseNet's architecture is designed 
to promote feature reuse through dense connections between layers, but the learned 
representations appear insufficiently discriminative in this case. A high loss of 1.06 
suggests convergence difficulties, possibly caused by vanishing gradient issues despite 
their densely connected layers. Although DenseNet’s parameter size of 28.01 MB is 
moderate, its performance was significantly lower than that of EfficientNet B0, indicating 
that parameter count alone does not directly determine classification accuracy. ResNet50, 
leveraging deep residual learning, achieved 84.36% accuracy with the lowest loss value 
(0.35), demonstrating stable gradient flow and effective optimization. Skip connections 
likely mitigated vanishing gradients issues, leading to more stable learning. However, 
despite its strong recall of 84.37% and precision of 80.83%, its large parameter size (100.17 
MB) makes it the most computationally expensive model in this comparison.  Its lower loss 
while maintaining accuracy similar to EfficientNet B0 suggests that residual connections 
improve convergence stability, particularly in deep networks. 
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 Lastly, GoogleNet, with an accuracy of 88%, performed well, particularly excelling 
in an F1 score of 93%, indicating a strong balance between precision and recall. However, 
its higher loss of 0.96 indicates some instability in model convergence, possibly due to 
the inception module’s complexity, which may introduce optimization challenges. With 
a moderate parameter size of 85.51 MB, GoogleNet is a viable alternative to VGG16 
and ResNet50, offering competitive performance while being relatively lighter in terms 
of computation. Its parallel convolutional architecture contributes to strong extraction of 
features, but its higher loss suggests potential challenges in refining decision boundaries. 

Comparison of Model Performance

The comparison of model performance highlights important trade-offs between accuracy, 
parameter size, and computational efficiency. VGG16 and GoogleNet achieved the highest 
accuracy but have larger parameter sizes, making them more resource-intensive. ResNet50, 
while also highly accurate, has the largest parameter size, affecting computational efficiency. 
DenseNet offers a balance between model size and moderate accuracy, whereas EfficientNet 
B0, though compact, sacrifices some performance. While models like ResNet50 and VGG16 
generalize well, they require significant computational resources, whereas smaller models 
like EfficientNet B0 and DenseNet prioritize efficiency but may require additional tuning 
for specific tasks. 

This study offers several advantages over previous research. Unlike Maeda-Gutiérrez 
et al. (2020), who evaluated CNNs on a subset of PlantVillage (focusing only on tomato 
diseases), our analysis spans all 38 classes, providing a more comprehensive benchmark. 
Additionally, the inclusion of multiple performance metrics such as accuracy, loss, recall, 
F1 score, precision, and parameter size surpasses the single-metric focus in Bhagat et al. 
(2020), enabling a more holistic evaluation. Compared to Kaya and Gürsoy (2023), who 
achieved 98.17% accuracy using a multi-head CNN, our study prioritizes widely established 
models for broader accessibility, albeit with a slight accuracy trade-off  (e.g., VGG16 at 
93.75%). However, some limitations remain. Unlike Albattah et al. (2022), who tested 
on 14 species with custom architectures, our reliance on the PlantVillage dataset limits 
species diversity. Additionally, real-time deployment was not explored, unlike in Chen et 
al. (2020), who achieved 99.85% accuracy with MobileNet-Beta, underscoring a gap in 
practical applicability.

Statistical Validation

To assess whether performance differences are statistically meaningful, paired t-tests were 
conducted on accuracy across five runs per model. VGG16 (93.75% ± 1.1) significantly 
outperformed DenseNet201 (69.32% ± 1.5%, p < 0.01) and EfficientNet B0 (84.37% ± 
1.3, p < 0.05), with 95% confidence intervals confirming robustness. ResNet50 (84.36% 
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± 1.2) and GoogleNet (88% ± 1.4) showed no significant difference (p = 0.12), suggesting 
dataset bias (e.g., uniform lighting) may favor certain architectures. These results indicate 
that VGG16’s superiority is not due to chance, though DenseNet201’s underperformance 
may reflect bias toward controlled images.

Error Analysis

The performance metrics in Table 2 highlight potential misclassification patterns across the 
five CNN models, inferred from their recall, precision, and loss values. VGG16, with high 
recall (93.75%) and precision (90.63%), likely excels at distinguishing healthy leaves from 
diseased ones but may struggle with subtle disease variants, such as early blight and late 
blight in potatoes, due to its deep architecture overfitting to prominent features like large 
lesions (Soumya Prasad et al., 2024). GoogleNet's balanced recall (88%) and precision 
(87.46%), paired with a higher loss (0.96), likely confuses diseases with similar symptoms, 
such as tomato bacterial spot as a viral infection, reflecting its inception modules’ sensitivity 
to complex patterns. EfficientNet B0’s lower precision (80.10%) and recall (84.38%) 
indicate frequent errors in distinguishing visually similar conditions, such as apple scab 
versus cedar rust, due to its compact design prioritizing efficiency over fine-grained feature 
extraction. ResNet50 (recall 84.37%, precision 80.83%) likely performs similarly, with 
its residual learning mitigating some errors but not fully resolving subtle class overlaps. 
DenseNet201’s notably low recall (68.75%) and F1 score (67.81%), combined with a high 
loss (1.06), suggest significant misclassifications, potentially labeling diseased leaves as 
healthy, stemming from its dense connectivity struggling with PlantVillage’s controlled, 
uniform images. These inferred errors underscore the models’ varying sensitivities to 
symptom subtlety, a limitation tied to dataset bias toward distinct, lab-captured disease 
appearances.

Trade-Offs and Deployment Considerations

VGG16 offers the highest accuracy at 93.75%. However, it comes with a significant 
computational cost, requiring 56.79 MB of storage and an exceptionally high inference 
time of 37,733 s, making it impractical for real-time applications. In contrast, EfficientNet 
B0 sacrifices some accuracy at 84.37% in favor of efficiency, featuring a smaller model 
size of 18.62MB and a significantly lower inference time of 2,718 s, making it well-
suited for mobile and edge deployments. GoogleNet strikes a strong balance with 88.00% 
accuracy, a faster inference time of 2,625 s, and superior generalization, as reflected in 
its high F1-score of 93.00%. This makes it an effective solution for precision agriculture 
and automated disease detection. ResNet50 and DenseNet, despite some advantages, do 
not stand out in terms of accuracy, efficiency, or speed, making them less ideal for real-
world deployment. For cloud-based applications where computational resources are not 
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a limitation, VGG16 remains the best choice. At the same time, for real-time, low-power, 
or mobile deployments, EfficientNet B0 and GoogleNet are the most suitable options due 
to their efficiency and faster inference times.

CONCLUSION

This paper compares five CNN models (VGGNet-16, GoogleNet, EfficientNet, ResNet50, 
and DenseNet201) for plant disease classification using the PlantVillage dataset. The study 
examines trade-offs between model accuracy, parameter size, and computational efficiency 
in DL applications for plant disease classification. VGG16 and GoogleNet achieved the 
highest accuracy but required larger parameter sizes, making them resource-intensive. 
ResNet50 offered good accuracy and had a large model size, while DenseNet201 and 
EfficientNet B0 offered more compact architectures at the cost of reduced performance. The 
choice of an optimal model depends on specific requirements: larger models are well-suited 
for high-accuracy tasks, whereas smaller models are more efficient for resource-constrained 
environments. Future research should focus on optimizing model architectures to balance 
performance and computational efficiency, improving disease detection in agricultural 
applications. While this study provides a comparative analysis of CNN architectures for 
plant disease classification, several areas of future research could further enhance model 
performance, as follows:

One promising direction is the development of hybrid models that integrate Recurrent 
Neural Networks (RNNs) with CNNs for time-series analysis of plant health. Such models 
could monitor disease progression over time, enabling more robust and dynamic detection 
systems. 

Incorporate multi-source datasets with images collected under diverse lighting 
conditions, weather variations, and crop species. This would improve model generalization 
and robustness, reducing biases that arise from controlled dataset environments.

Investigate the applicability of Transformer-based models (e.g., ViTs and Swin 
Transformers) to plant disease classification and compare their efficiency, accuracy, and 
computational requirements against traditional CNN architectures.

Another avenue for exploration is the deployment of lightweight models like MobileNet 
for real-time disease detection on edge devices. This advancement could revolutionize 
precision agriculture, allowing farmers to monitor plant health using AI-powered cameras 
integrated into mobile devices or drones.
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